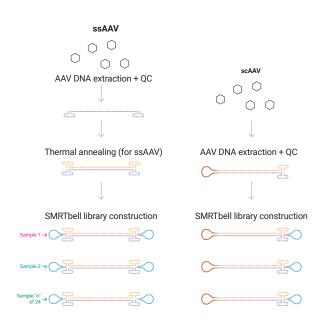

AAV SEQUENCING — APPLICATION BRIEF BEST PRACTICES

Accelerate discovery and comprehensively assess adeno-associated virus (AAV) vector quality with highly accurate long reads (HiFi reads)

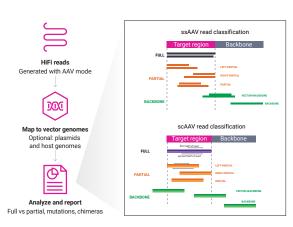
With Single Molecule, Real-Time (SMRT®) sequencing on the Sequel® Ile and Revio™ systems, you can sequence AAV genome populations to identify truncation, mutation, and host integration events. The AAV workflow from PacBio® accommodates both scAAV and ssAAV constructs with easy on-instrument HiFi read generation.

From AAV to SMRTbell® libraries with data analysis solutions

Use PacBio's AAV protocol1 to:


- Convert ssAAV DNA to double-stranded DNA by thermal annealing
- Multiplex up to 24 samples using barcoded SMRTbell adapters

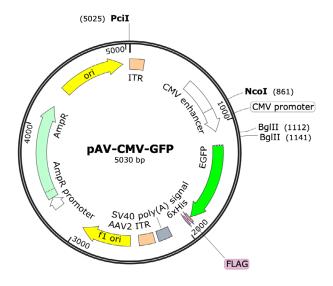
Use the on-instrument AAV mode² to:


 Generate HiFi reads for proper handling of scAAV and ssAAV structures Analyze your AAV PacBio data with:

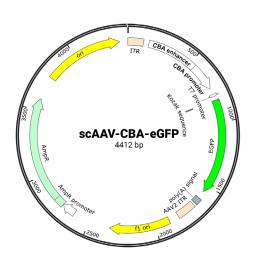
- GitHub command-line analysis,3 or
- Form Bio's cloud-based analytical solution⁴

HiFi library workflow for AAV

Bioinformatics workflow for AAV



HiFi reads generated with on-instrument AAV mode are aligned to a reference vector genome and optionally other helper plasmids and host genomes. Reads are characterized as ssAAV or scAAV based on the presence or absence of self-complementary alignments, with further characterization as full or partial vectors, backbone or other contaminations, etc. For more information, visit the AAV wiki³ or the AAV bioinformatics webinar.⁵



AAV sample characterization

Example 1. HiFi sequencing identifies unexpected self-complementary structures in ssAAV

Example 2. HiFi sequencing confirms expected scAAV vector genomes

HiFi read length distribution 240,000 210,000 90,000 0 2,000 4,000 6,000 8,000 10,000 HiFi read length, bp

scAAV CBA-eGFP

ssAAV	Full	0.4%
	Partial	0.5%
	Backbone	0.0%
scAAV	Full	95.1%
	Partial	3.6%
	Backbone	0.1%

Table 2. Characterization of scAAV using HiFi sequencing. Percentage of reads characterized as full, partial, or backbone, based on alignment to reference vector sequences. Reads mapping with complementary structures will be characterized as scAAV.

ssAAV pAV-CMV-GFP

ssAAV	Full	35.8%
	Partial	10.4%
	Backbone	0.0%
scAAV	Full	29.0%
	Partial	19.4%
	Backbone	0.8%

Table 1. Characterization of ssAAV using HiFi sequencing. Expected full-length ssAAV reads (\sim 2.5 kb) make up only 35.8% of reads. Unexpected self-complementary structures (scAAV) of the full vector (\sim 5 kb) make up 29% of the reads.

Learn about AAV gene therapy: pacb.com/gene-therapy

KEY REFERENCES

- Procedure & checklist Preparing multiplexed AAV SMRTbell libraries using SMRTbell prep kit 3.0
- 2. SMRT Link user guide (v11.0)
- 3. https://github.com/Magdoll/AAV
- 4. https://info.formbio.com/pacbio
- Bioinformatics webinar series on-demand: Optimizing and confirming AAV designs with PacBio sequencing

